TA: LEE, Yat Long Luca **Email:** <yllee@math.cuhk.edu.hk> **Office:** Room 505, AB1 **Office Hour:** Send me an email first, then we will arrange a meeting (if you need it).

Recall:

Theorem 3.4 (Perturbation of Identity)

Let $(X, ||\cdot||)$ be a Banach space and $\Phi : B_r(x_0) \to X$ satisfies $\Phi(x_0) = y_0$. Suppose that Φ is of the form *I* + Ψ where *I* is the identity map and Ψ satisfies

 $\|\Psi(x_2) - \Psi(x_1)\| \leq \gamma \|x_2 - x_1\|$, $x_1, x_2 \in \overline{B_r(x_0)}$, $\gamma \in (0, 1)$

Then for $y \in \overline{B_R(y_0)}$, $R = (1 - \gamma)r$, there is a unique $x \in \overline{B_r(x_0)}$ satisfying $\Phi(x) = y$.

Theorem 3.7 (Inverse Function Theorem) Let $F: U \to \mathbb{R}^n$ be a C^1 -map where *U* is open in \mathbb{R}^n and $x_0 \in U$. Suppose that $DF(x_0)$ is invertible.

- (a) There exists open sets *V* and *W* containing x_0 and $F(x_0)$ respectively such that the restriction of *F* on *V* is a bijection onto *W* with C^1 -inverse
- (b) The inverse is C^k when *F* is C^k , for any $1 \leq k \leq \infty$, in *V*

Theorem 3.9 (Implicit Function Theorem)

Consider a C^1 -map $F: U \to \mathbb{R}^m$ where *U* is an open set in $\mathbb{R}^n \times \mathbb{R}^m$. Suppose that $(x_0, y_0) \in U$ satisfies $F(x_0, y_0) = 0$ and $D_y F(x_0, y_0)$ is invertible in \mathbb{R}^m . There exists an open set $V_1 \times V_2$ in *U* containing (x_0, y_0) and a C^1 -map $\varphi : V_1 \to V_2$, $\varphi(x_0) = y_0$, such that

$$
F(x,\phi(x))=0
$$

The map φ belongs to C^k when *F* is C^k , for $1 \leq k \leq \infty$, in *U*. Moreover, assume further that DF_{ν} is invertible in $V_1 \times V_2$. If $\psi : V_1 \to V_2$ is a C^1 -map satisfying $F(x, \psi(x)) = 0$, then $\psi = \varphi$.

Remark: A map $F : \mathbb{R}^n \to \mathbb{R}^m$ is called a *diffeomorphism* if it (i) is smooth, (ii) is bijective and (iii) has a smooth inverse. A map *F* is called a *local diffeomorphism* around *p* if there exists an open neighborhood $U \subset \mathbb{R}^n$ of p and an open neighborhood $V \subset \mathbb{R}^m$ of $F(p)$ such that $F|_U : U \to V$ is a diffeomorphism.

Exercise 1

Source: Previous Homework Problem

Show that
$$
\begin{cases} x + y^4 = 0 \\ y - x^2 = 0.015 \end{cases}
$$
 is solvable near $(x, y) = 0 \in (\mathbb{R}^2, ||\cdot||)$

Note that $\|\cdot\|$ is the usual Euclidean norm on \mathbb{R}^2 .

Solution:

Define $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ by $\Phi = I + \Psi$, where $\Psi(x, y) = (\Psi_1(x, y), \Psi_2(x, y)) = (\Psi_1^4, -x^2)$. We can see that $\Phi(0, 0) = (0, 0)$.

Then we can apply Perturbation of Identity to Φ. The idea is to construct a *r >* 0 such that $\Psi|_{\overline{B_r(0)}}:(\overline{B_r(0)},\|\cdot\|)\to (\mathbb{R}^2,\|\cdot\|)$ is a contraction. For any $(x_1,y_1),(x_2,y_2)\in\overline{B_r(0)}$, we have

$$
\|\Psi(x_1,y_1)-\Psi(x_2,y_2)\|\leq M\|(x_1,y_1)-(x_2,y_2)\|
$$

where

$$
M:=\sup_{(x,y)\in \overline{B_r(0)}}\left(\left(\frac{\partial \Psi_1}{\partial x}\right)^2+\left(\frac{\partial \Psi_1}{\partial y}\right)^2+\left(\frac{\partial \Psi_2}{\partial x}\right)^2+\left(\frac{\partial \Psi_2}{\partial y}\right)^2\right)^{\frac{1}{2}}
$$

as in P.8 of lecture notes 3 by Prof K.S. Chou. We calculate *M* explicitly and obtain

$$
\sup_{(x,y)\in\overline{B_r(0)}} \left(0^2 + 16y^6 + 4x^2 + 0\right)^{\frac{1}{2}} \le 2r\sqrt{4r^4 + 1}
$$

since $||(x, y)|| \leq r \implies x, y \leq r$.

Choose $r = \frac{1}{4}$, then $M \le 2 \left(\frac{1}{4}\right) \sqrt{4 \left(\frac{1}{4}\right)^4 + 1} = \frac{\sqrt{65}}{16} < 1$. Hence, we have show that $\Psi|_{\overline{B_r(0)}} : (\overline{B_r(0)}, \lVert \cdot \rVert) \to (\mathbb{R}^2, \lVert \cdot \rVert)$

is a contraction.

By Perturbation of Identity, $\Phi(x) = y$ is solvable for any $y \in \overline{B_R(0)}$, here, 0 is because $\Phi(0) = 0$, and $R = (1 - M)r = (1 - \frac{\sqrt{65}}{16})\frac{1}{4} = \frac{16 - \sqrt{65}}{64}$. In particular, $(0, 0.015) \in \overline{B_R(0)}$. Thus, the given system is solvable for $(x, y) \in B_{\frac{1}{4}}(0)$.

Remark: The "*M*-trick" here is useful. Analysis has a lot of so-called "tricks", you can remember some of them as they come in handy when you need it.

.

Exercise 2

Source: Modified from Exercise 6.7.3 in Terence Tao's "Analysis II"[1](#page-2-0).

This exercise serves as a Corollary of the Inverse Function Theorem.

Suppose that $F: \mathbb{R}^n \to \mathbb{R}^n$ is C^1 such that its Jacobian, $DF(x)$, is nonsingular for every $x \in \mathbb{R}^n$. Show that whenever *U* is open in \mathbb{R}^n , $F(U)$ is open in \mathbb{R}^n

Solution:

For any $p \in \mathbb{R}^n$, we are given that

 $\det DF(p) \neq 0$

then the inverse function theorem tells us that there exists an open neighborhood V_p containing p and an open neighborhood W_p containing $F(p)$ such that $F|_{V_p}: V_p \to W_p$ is a diffeomorphism. In particular, a diffeomorphism is a homeomorphism, this means $F(V_p)$ is open.

Now that for any open set $U \subset \mathbb{R}^n$, at any point $x \in U$, we have a neighborhood V_x such that *F*(*V_x*) is open from the above discussion. Since $U = \bigcup_{x \in U} V_x$, then

$$
F(U) = \bigcup_{x \in U} F(V_x)
$$

is open.

.

¹You can download Tao's book (actually almost every Springer books) on Springer's website using your CUHK student credentials in [here.](https://login.easyaccess1.lib.cuhk.edu.hk/login?qurl=https%3a%2f%2flink.springer.com)

Exercise 3

Source: Midterm Question of MATH3043 at HKUST written by Prof Frederick Fong

The goal of this exercise is to show how the inverse function theorem can be applied.

Consider a C¹ function $f : \mathbb{R}^3 \to \mathbb{R}$ such that $\Sigma := f^{-1}(0)$ is nonempty and $\nabla f(p) \neq 0$ for any $p \in \Sigma$. Show that for any $p \in \Sigma$, there exists a bijective map $\varphi : U \to V$, where *U* is open in \mathbb{R}^3 containing *p* and *V* is another open set in \mathbb{R}^3 so that both φ and φ^{-1} are *C*¹, and that

$$
\Sigma\cap U=\left\{\phi^{-1}(x,y,0):(x,y,0)\in V\right\}
$$

Solution:

Since $\nabla f(p) \neq 0$, we may assume, WLOG, that $\frac{\partial f}{\partial z}(p) \neq 0$.

Now we construct a map $\psi : \mathbb{R}^3 \to \mathbb{R}^3$ by

$$
\psi(x,y,z):=(x,y,f(x,y,z))
$$

What this map does is to "straighten" a curved surface to a plane. For example, if ψ takes value from Σ , then $\psi(x, y, z) = (x, y, 0)$ which is essentially the plane $z = 0$ in \mathbb{R}^3 .

Next, we want to find φ as stated in the question. Consider locally at p ,

$$
D\psi(p) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{\partial f}{\partial x}(p) & \frac{\partial f}{\partial y}(p) & \frac{\partial f}{\partial z}(p) \end{pmatrix}
$$

the determinant is given by $\frac{\partial f}{\partial z}(p)$, which is assumed to be nonzero from the condition that $\nabla f(p) \neq 0$. So, the Jacobian is nonsingular, the inverse function theorem then tells us that there exists an open set *U* containing *p* and a open set *V* containing $\psi(p)$ such that

$$
\varphi := \psi|_U : U \to V
$$

is a bijection with *C*1-inverse.

Lastly, we check Σ ∩ *U* = { $\varphi^{-1}(x, y, 0)$: $(x, y, 0) \in V$ }. For all *q* ∈ *U* ∩ Σ, we have $f(q) = 0$. This implies $\psi(q) = (x, y, f(x, y, z)) = (x, y, 0) \in V$. Hence, we have the first inclusion.

Now take any *q* ∈ { $\varphi^{-1}(x, y, 0)$: $(x, y, 0) \in V$ }, then $\varphi(q) = (x, y, 0)$, this shows that $f(q) = 0$ and hence the second inclusion is proved.

Remark: One can also check Proposition 2 in P.61 of do Carmo's "Differential Geometry of Curves and Surfaces", which basically says the same thing with some terminologies from differential geometry. Interestingly, I found that "curves and surfaces" was indeed a topic in MATH3060 before, but is now replaced by the Picard-Lindelöf Theorem.

.

Exercise 4 (Optional)

This question is **beyond the scope of this course**. But this questions introduces how inverse function theorem is useful in handling geometric problems. If you are interested, you can take MATH4030, MATH5070 and MATH5061, or, if you want a quick introduction, you can read "Differentiable Manifolds and Riemannian Geometry" written by Prof Frederick Fong, you can find it [here.](https://canvas.ust.hk/courses/22931)

The goal of this question is to show that the unit cylinder,

$$
M := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\} \subset \mathbb{R}^3
$$

is diffeomorphic to the punctured plane $\mathbb{R}^2 \setminus \{(0,0)\}$ via the map $\Phi : M \to \mathbb{R}^2 \setminus \{(0,0)\}$ defined by

$$
\Phi(x, y, z) = e^z(x, y)
$$

- (a) Show that Φ is bijective.
- (b) Find two parametrization of *M*. [The reason of finding two parametrizations is because one cannot cover the whole *M*.]
- (c) Denote the two parametrizations by F_1 and F_2 , then show that $\Phi \circ F_i$ is smooth and that its inverse $F_i^{-1} \circ \Phi^{-1}$ is smooth too, for $i = 1, 2$. [This is the part where Inverse Function Theorem is used].

Solution: See Example 2.23 from Prof Frederick Fong's notes.

12